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Abstract. The Hirota bilinear difference equation is generalized to discrete space of arbitrary
dimension. Solutions to the nonlinear difference equations can be obtained via Bäcklund
transformation of the corresponding linear problems.

1. Introduction

The Hirota bilinear difference equation (HBDE) [1] plays a central role in the study
of integrable nonlinear systems. This single equation embodies an infinite number of
integrable differential equations which belong to the KP-hierarchy as shown by Miwa [2].
It characterizes algebraic curves [3], appears as a consistency relation for Laplace maps on
a discrete surface [4] and is satisfied by string correlation functions in particle physics [5].
It is also satisfied by transfer matrices [6–8], or by certain quantities properly defined from
Boltzmann weights [9], of some solvable lattice models.

Solutions to the HBDE, calledτ functions, are known [10, 11] to form a Grassmann
manifold of infinite dimensions. On this space of solutions a Bäcklund transformation acts
and generates theGL(∞) symmetry. This large symmetry is the origin of integrability
of the system. The scheme of the Bäcklund transformation can be seen most easily if we
convert HBDE into a pair of linear homogeneous equations. It was first found by Hirota in
[1] and then represented in a manifestly symmetric form under the Bäcklund transformations
in [12]. The coupled linear equations describe the behaviour of a wavefunction under the
influence of gauge potentials. The compatibility condition for the wavefunction to solve the
coupled equations requires the gauge potential to satisfy the HBDE.

The situation is similar to the inverse scattering method. The difference from the
ordinary inverse method is that every solution to the linear equations also fulfils the same
nonlinear equation satisfied by the gauge potential. This is due to the remarkable symmetry
under the exchange of the wavefunction and the gauge potential, which we called the dual
symmetry in [12]. Hence, by solving the linear system of equations iteratively we obtain a
series of solutions to the nonlinear equation. We call this scheme of finding new solutions
to a nonlinear equation, a linear Bäcklund transformation (LBT).
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An interesting application of this scheme was found and described in [8]. The authors
showed that it can be used to generate Bethe ansatz solutions to certain classes of solvable
lattice models. In order to uncover the meaning of the correlation between the solvable
lattice models and the HBDE, it is desireble to formulate a LBT such that the symmetries
of this scheme can be seen from both sides. From this point of view we discuss, in this
paper, a symmetric generalization of LBTs.

The HBDE is a highly symmetric equation under the exchange of lattice variables. The
linear equations discussed in [12], however, do not possess this symmetry. In section 3 we
derive a symmetric version of the LBT associated with HBDE. We will show in section 4
that we can generalize this scheme to a lattice space of arbitrary dimension. Corresponding
to this generalization we obtain a large number of nonlinear equations which can be solved
by the LBT method. The HBDE turns out to be a special case of this scheme.

2. Hirota bilinear difference equation

Let us begin by writing the Hirota bilinear difference equation (HBDE) [1] for a function
f ∈ C∞ of discrete variablesλ,µ, ν:

αf (λ+ 1, µ, ν)f (λ− 1, µ, ν)+ βf (λ, µ+ 1, ν)f (λ, µ− 1, ν)

+γf (λ, µ, ν + 1)f (λ, µ, ν − 1) = 0 (1)

whereα, β, γ are arbitrary complex parameters. This is a very simple and highly symmetric
equation. In order to show how the LBT generates solutions to(1), we follow the argument
of [5], but in a different notation convenient later.

We consider the following coupled linear problems:

∇12g = ω12g ∇21 g = ω21g (2)

∇12 := f2e∂λ−∂ν f −1
2 − c1f1e∂µ−∂ν f −1

1

∇21 := f1e−∂λ−∂ν f −1
1 − c2f2e−∂µ−∂ν f −1

2

(3)

wheref1, f2 are functions ofλ,µ, ν andω12, ω21, c1, c2 are constants. The shift operator
e∂x acts to all functions on the right by changingx to x + 1.

HBDE (1) emerges from the compatibility condition of this set of linear equations

[∇12,∇21] = 0. (4)

In fact, if we impose the conditionf1(λ, µ+ 1, ν + 1) = f2(λ+ 1, µ, ν + 1) =: f (λ, µ, ν)
to the gauge potentials, this operator relation turns to

e−2∂ν
f (λ, µ− 1, ν + 1)f (λ− 1, µ, ν + 1)

f (λ− 1, µ− 1, ν)f (λ, µ, ν)
(e−∂µ − e−∂λ)

×
{
f (λ+ 1, µ, ν)f (λ− 1, µ, ν)

f (λ, µ, ν + 1)f (λ, µ, ν − 1)
− c1c2

f (λ, µ+ 1, ν)f (λ, µ− 1, ν)

f (λ, µ, ν + 1)f (λ, µ, ν − 1)

}
= 0. (5)

Since the left-hand side is a difference of the quantity in the brace, this quantity itself must
be a constant. By adjusting the parameters asc1c2 = −β/α, and putting the constant−γ /α
we obtain the HBDE.

An important observation is that the linear equations(2) are symmetric under the
exchange of the role of the gauge potentialsf and the wavefunctiong. This is due to
the fact that under the same constraints for the guage fieldsf ’s, (2) can also be written as

∇̃12f = ω12f ∇̃21f = ω21f (6)
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if we defineg1(λ, µ− 1, ν − 1) = g2(λ− 1, µ, ν − 1) = g(λ, µ, ν) and

∇̃12 := g2e−∂λ+∂ν g−1
2 − c1g1e−∂µ+∂ν g−1

1

∇̃21 := g1e∂λ+∂ν g−1
1 − c2g2e∂µ+∂ν g−1

2 .
(7)

It is not difficult to convince ourselves that the linear equations(6) for the new wavefunction
f can be solved only if the new gauge potentialg satisfies(1), the same equation satisfied
by f . This is what we called dual symmetry in [12].

The LBT works as follows. Starting from a particular solution to HBDE, sayf (1), as
a gauge potential we solve the linear problem(2). One of its solutions, which we callg(1)

satisfies the HBDE because it can be regarded as a potential of the coupled linear equations
(6) which are nothing but another expression of(2).

The set of coupled equations(6) should have solutions other thanf (1). Let us call it
f (2). f (2) must also satisfy HBDE, because(2) hasg(1) as a solution, hence it is compatible.
Now we can repeat the same argument starting fromf (2) to obtain a new solutiong(2) to
the HBDE, and so on. This is an auto-Bäcklund transformation sincef ’s and g’s are
solutions to the same equation. By starting from the simplest solutionf (1) = 1 in the case
of α + β + γ = 0 in (1), for instance, we obtain a series of soliton solutions explicitly in
this method [12].

3. Symmetrization of the LBT

The HBDE is highly symmetric by itself, in contrast to its continuous reductions, such as the
KdV equation, Toda lattice equation, sine-Gordon equation etc. The corresponding linear
version of HBDE,(2) and (6), however, are not symmetric. In this section, we derive a
complete set of linear equations which recover the symmetries possessed by the HBDE.

First we examine the symmetries of the HBDE. From(1) HBDE relates functions
defined on the six lattice sites(λ ± 1, µ, ν), (λ, µ ± 1, ν), (λ, µ, ν ± 1), which form an
octahedron in the three-dimensional lattice space. Connecting these corners of octahedrons
forms a face centred cubic (fcc) lattice. Hence dependent variables of the HBDE reside on
a fcc lattice, rather than a simple cubic lattice. Indeed the vectorsp, q, r in figure 1 are
the primary translation vectors of a fcc.

The HBDE possesses point group symmetries which transform an octahedron to itself.
It includes the inversionI , which changes the sign of the variablesλ,µ, ν, and the mirror
reflectionsσij which exchange the trianglesSi andSj in figure 2. The LBT represented in
the form of (2), however, is not symmetric under the group transformation. The purpose
of this section is to make it symmetric.

First note that the potential fieldf1 appears in(2) as a gauge field in the form of
covariant shift operatorsf1e∂µ−∂ν f −1

1 andf1e−∂λ−∂ν f −1
1 defined on two edges of the triangle

S1 in figure 2. Similarly the fieldf2 is associated with the triangleS2. On the other hand
from (6) we learn that the fieldsg1 and g2 are associated with the trianglesS̃1 and S̃2,
respectively, which are obtained fromS1 andS2 via inversions with respect to the origin.
Hence equations(2) and(6) are related to each other by the inversionI . In other words the
inversion is realized by the dual symmetry. The rest of the point group symmetry requires
potential fields associated withS3 andS4 to exist. Let us call themf3 andf4, respectively.

In order to make the symmetry manifest it is convenient to introduce the following set
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Figure 1. Figure 2.

of derivatives

∂̂1 = ∂λ − ∂µ − ∂ν
2

∂̂2 = ∂µ − ∂ν − ∂λ
2

∂̂3 = ∂ν − ∂λ − ∂µ
2

∂̂4 = ∂λ + ∂µ + ∂ν
2

.

(8)

They represent the gradients along the normal to the surfacesS1, S2, S3, S4. In terms of
these operators the point symmetry transformations can be expressed as

I : fj ↔ gj ∂̂j →−∂̂j
σij : fi ↔ fj ∂̂i ↔ ∂̂j .

(9)

Applying σ ’s to (2) successively we obtain, up to coefficients, the following six pairs of
equations

(fje
∂̂k−∂̂l f −1

j + fke∂̂j−∂̂l f −1
k + 1)g = 0

(fke
∂̂j−∂̂i f −1

k + fje∂̂k−∂̂i f −1
j + 1)g = 0

j < k (i, j, k, l) = even permutation of(1, 2, 3, 4).

(10)

Among the 12 equations of(10) note that, corresponding to each triangle of the
octahedron, there are three equations which connect two edges of the same triangle by
the gauge fields. For instance the set of equations(j, k) = (1, 2), (2, 4), (1, 4) determine
the triangleS3. For the consistency of these equations they must be the same. We can
resolve this problem if we adopt the following conditions to the gauge fields:

fj (λ, µ, ν) = e∂̂j−∂̂4f (λ, µ, ν) j = 1, 2, 3, 4. (11)

Using the fact that̂∂1+ ∂̂2+ ∂̂3+ ∂̂4 = 0 we can write(10) as

(e−∂̂j−∂̂i f )(e∂̂j+∂̂4g)+ (e−∂̂k−∂̂i f )(e∂̂k+∂̂4g)+ (e−∂̂l−∂̂i f )(e∂̂l+∂̂4g) = 0 (12)

for all even permutations of (1,2,3,4). Here we used the notation(e∂̂ f ) to mean that ê∂

acts only on the functions in the bracket. In this expression it is obvious that, for a giveni,
three equations with different choices ofj, k, l are the same equation. Therefore we have
only four different equations, which we can write as∑

j 6=i
aij (e

−∂̂i−∂̂j f )(e∂̂j+∂̂4g) = 0 i = 1, 2, 3, 4. (13)
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We have recovered coefficientsaij in this expression. They are free unless we specify the
values ofα, β, γ in HBDE. This is the symmetrized LBT which we were looking for and
is symmetric under theσ transformations.

The symmetric LBT(13) possesses theσ symmetry as we required. From the analogy
of the correspondence between(2) and (6), the inversion symmetry, which has not been
imposed so far, should be included if the dual symmetry under the exchange off and g
holds. In fact if we multiply the shift operator e∂̂i−∂̂4 from the left to theith equation of
(13), it becomes∑

j 6=i
aij (e

∂̂i+∂̂j g)(e−∂̂j−∂̂4f ) = 0 i = 1, 2, 3, 4. (14)

These are exactly the equations we obtain from(13) by the inversion transformationI of
(9). Therefore(13) itself is the totally symmetric LBT which we expected.

Now we will show how HBDE arises from this set of equations. Writing(13) explicitly
we have, up to the coefficients,

0 f (λ, µ, ν + 1) f (λ, µ+ 1, ν) f (λ− 1, µ, ν)
f (λ, µ, ν + 1) 0 f (λ+ 1, µ, ν) f (λ, µ− 1, ν)
f (λ, µ+ 1, ν) f (λ+ 1, µ, ν) 0 f (λ, µ, ν − 1)
f (λ− 1, µ, ν) f (λ, µ− 1, ν) f (λ, µ, ν − 1) 0



×


g(λ+ 1, µ, ν)
g(λ, µ+ 1, ν)
g(λ, µ, ν + 1)

g(λ+ 1, µ+ 1, ν + 1)

 = 0. (15)

Since this is a homogeneous linear equation the determinant of the coefficient matrix must
vanish. For simplicity we assume that the matrix is antisymmetric, that is, the coefficients
satisfyaij = −aji . In this case the determinant is the square of Pfaffian, hence the solvability
condition turns out to be

a14a23f (λ+ 1, µ, ν)f (λ− 1, µ, ν)− a13a24f (λ, µ+ 1, ν)f (λ, µ− 1, ν)

+a12a34f (λ, µ, ν + 1)f (λ, µ, ν − 1) = 0. (16)

In this way the HBDE is reproduced.

4. Generalization of HBDE to higher dimensions

Our symmetric LBT(13) possesses the symmetries of the three-dimensional fcc lattice
space. The fourth derivativê∂4, however, plays a different role in(13) from others. This
is due to the fact that there are only three independent variables needed to characterize the
four surfacesS1 ∼ S4. This also prevents us from extending the space to higher dimensions.

In this section, we show that the symmetric LBT(13) can be rewritten in a manifestly
symmetric form in the four-dimensional lattice space if we introduce a parameters which
specifies the order of B̈acklund transformations. Moreover, it also enables us to generalize
the linear equations to arbitrary dimensional lattice space.

Instead of considering two different kinds of fields we associate the parameters + 2 to
f ands + 1 to g and define a new functionf (λ, µ, ν; s) by

f (λ, µ, ν; s + 2) = f (λ, µ, ν) f (λ, µ, ν; s + 1) = g(λ, µ, ν). (17)
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We also introduce new variableskj ’s with j = 1, 2, 3, 4 by

k1 := λ− µ− ν
2

+ s
4

k2 := µ− ν − λ
2

+ s
4

k3 := ν − λ− µ
2

+ s
4

k4 := λ+ µ+ ν
2

+ s
4
.

(18)

It is not difficult to convince ourselves that the operations of∂̂j is equivalent to the operation
of ∂j − ∂s , where∂j means∂/∂kj for all j . Hence the symmetric LBT(13) can be written
as

4∑
j=1

aij (e
∑4

l=1 ∂l−∂i−∂j f )(e∂j f ) = 0 i = 1, 2, 3, 4. (19)

Note that(19) is totally symmetric for all variableskj , j = 1, 2, 3, 4.
In terms of the new variables the HBDE turns out to be

αf (k1+ 1, k2, k3, k4+ 1)f (k1, k2+ 1, k3+ 1, k4)

+βf (k1, k2+ 1, k3, k4+ 1)f (k1+ 1, k2, k3+ 1, k4)

+γf (k1, k2, k3+ 1, k4+ 1)f (k1+ 1, k2+ 1, k3, k4) = 0. (20)

The introduction of the fourth variable does not affect the contents of the equations.
However, it enables us to generalize the equations to higher dimensional lattice space. In the
following we show that the generalized equations also provide a Bäcklund transformation
scheme which generates solutions to new nonlinear difference equations.

For convenience we define

fj = e∂j f f̃j = e−∂j f (21)

Gij (f ) = aij exp

[ n∑
l=1

∂l − ∂i − ∂j
]
f G̃ij (f ) = aij exp

[
−

n∑
l=1

∂l + ∂i + ∂j
]
f. (22)

Then then-dimensional LBT and its dual are
n∑
j=1

Gij (f )fj = 0 i = 1, 2, 3, . . . , n (23)

n∑
j=1

G̃ij (f )f̃j = 0 i = 1, 2, 3, . . . , n. (24)

They are the same equation but written differently. The Bäcklund transformation of the
system(23) and(24) proceeds in a way similar to the LBT of HBDE, which was discussed
in section 2. For the wavefunctionfj to be a solution of the homogeneous equation(23),
the potentialf must satisfy

det[G(f )] = 0. (25)

This is a nonlinear difference equation off . At the same time the solvability condition of
(24) requires

det[G̃(f )] = 0. (26)

Equations(25) and (26) are the nonlinear equations to be solved and to generalize
(4). Since(25) and (26) are not the same equation in general, the transformation may not
be auto-B̈acklund transformation. In the case ofn = 4, these two equations are identical
and coincide with the square of HBDE, as we have seen above. Hence(25) and (26) are
generalization of HBDE to ann-dimensional lattice. Note that at every step of the Bäcklund
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transformation the value of the parameters is changed by one. Sinces specifies a hyper-
plane in then-dimensional lattice space, the Bäcklund transformation propagates fields on
one plane to the next.

Before closing this paper let us make a brief remark on the connection of these results
with other works. A generalization of HBDE to a higher-dimensional lattice space has
been discussed in [13]. In their paper the equation itself is bilinear and is satisfied by the
sameτ functions of HBDE. It is a natural extention because the space of solutions to the
KP-hierarchy itself is symmetric under the choice of three variables out of infinite number
of variablesk1, k2, k3, . . . . We have checked that all soliton type of solutions to the higher-
dimensional HBDE also satisfy our symmetric LBT. Moreover we have proved that there
exists a solution which satisfies our trilinear equation but does not satisfy any of bilinear
Hirota equations extended to the four-dimensional lattice.

An integrable trilinear partial differential equation (PDE) was discussed in [14], which
has a connection with the Broer–Kaup system. Generalization to multilinear PDEs was
also studied in [15] and the Painlevé properties were examined. The authors claim that
no bilinear form corresponding to them has been found. Since the equations considered in
these references are not difference but differential equations, we need further investigation
to see the connection of our work to theirs.
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